
MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 1

File: CC2Guide-SpriteFiles.PDF
Format: PDF
Date: February 21st, 2004
Author: Mafi; closecombat2@claranet.de; http://closecombat2.fortunecity.com/
Last revision v8: March 10th, 2010 – added CC2’s style value inside the footer; WaR/TLD Terrain file

Close Combat 2 "A Bridge Too Far"

Sprite files of the
Close Combat games
(PC- & Mac-version of CC2;
 also: CC1, CC3, CC4, CC5, CCM, RtB and newer)

What it is

"Close Combat - A Bridge Too Far" (abreviated CC2, ABTF, CC2-ABTF) was the second game of
the CloseCombat-series created by Atomic and presented by Microsoft to the Mac-community. It
was also the last game of this series for the MacOS. The series was then continued by SSI, UbiSoft
and Destineer for PCs only (up to day CC3, CC4, CC5, CCM, The Road to Baghdad released in
January 2004, abbreviated: RtB, CCM v2 released to the USMC in summer 2005, the re-releases by
MatrixGames CoI, CCMT, WaR, TLD). CC2 was released in 1997 on a hybrid-CD, running on PCs
and under the MacOS 7.5 up to 9.2.2 / MacOS X 10.2.8 / 10.3 / 10.4 (in Classic environment) as
well. Later (localized) releases of CC2 were for PCs only. A trial demo of CC2 was also released in
1997.

Many thanks to ...

Many thanks to PEKKA SAASTAMOINEN aka "CPL_FILTH" for his great work. Without his program
"SprTool.exe" the easy handling of sprite files of all CC games is nearly impossible and the following
work could never be done by myself. Please look at his homepage for further development on CC2-
CC3-CC4-CC5-RtB-tools: http://www.student.oulu.fi/%7Epsaastam/ . He lend a
hand in 2004 in building up my own tool "CC2Spriter" for MacOS and PC. Thanks for all the
support, Cpl! Also many thanks to TIN TIN for his CC3-file format informations from his site at
http://www.organicbit.com/closecombat/ and to Nembo for further debugging infos
on my CC2Spriter tool. And I have to thank Konrad for his SprPack tool for CC2/CC3 to understand
better the Soldier/SoldierB files.

Sprite file basics

Sprite files in CC1 are used to store small graphics (commonly called "sprites") to represent vehicles
and other map details during gameplay in different orientation or in an animation sequence. Later on
this file format was used slightly modified in CC2 for the files "Explode", "Smoke", "Soldier",
"SoldierB", "Terrain" and all vehicle shadow files ("VehS###" and "VehB###"). In CC3 most of the
animation sequences moved into *.zfx files, leaving only the sprite files "Terrain", "Soldier" and
"SoldierB". From CC4 onward (until now in "The Road to Baghdad" = RtB) all animation sequences

mailto:closecombat2@claranet.de
http://closecombat2.fortunecity.com/
http://www.student.oulu.fi/%7Epsaastam/
http://www.organicbit.com/closecombat/

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 2

are stored (as 24-bit graphics) in *.azp archives. The only sprite files remaining are again "Terrain",
"Soldier" and "SoldierB". From CC4 onward the sprite file format changed again.

Sorry to say that I have not investigated the CC1-sprite file format completely. Here is what
CPL_FILTH has reported to me and what I have found:

Sprite file format

// byte order in CC1, CC2, CC3: Mac-like (Motorola style) Big Endian
// byte order in CC4, CC5, RtB: PC-like Little Endian
// (Intel style reverse byte format)
// every sprite file is divided into 5 parts; I will refer to them as "sections"

// section: HEADER (8 bytes):
char(4) // "SPRI" (CC1, CC2, CC3); "IRPS" (CC4, CC5, CCM, RtB)
long // version-ID, always 00000001h in CC2, all Terrain-files

// and in all *.nsd / *.zsd CC3 vehicle shadow files

// section: DIRECTORY (10 bytes):
short // Directory-ID (2 bytes): 03E8h = 1000 (decimal)
short // Number of sprite graphics in the "Sprite section" (2 bytes)
short // Number of animation sequences in the "Static

// animation section" , called "Sequences" by Atomic
// (2 bytes)

short // Number of animation sequences in the "Direction-oriented
// animation section" , called "Rotosprites" by Atomic
// (2 bytes)

short // 2 bytes of unknown purpose. Cpl_Filth supposes that it
// migh t be a color depth definition, but I think it
// will be the maximum length of direction-based
// animation sequences.

// section: SPRITES (of varying size):
short // Sprite-section-ID (2 bytes): 03E9h = 1001 (decimal)
sprite_entry // sprit e entries, see seperate list
sprite_entry // 3 different formats: CC1, CC2/CC3, CC4/CC5/CCM/RtB
sprite_entry
...

// section: STATIC ANIMATIONS (of varying size):
short // StaticAnim-section-ID (2 bytes): 03EAh = 1002 (decimal)
staticseq_entry // static an imation sequence entries, see separate list
staticseq_entry
staticseq_entry
...

// section: DIRECTION ORIENTED ANIMATIONS (of varying size):
short // DirectionAnim-section-ID (2 bytes): 03EBh = 1003 (decimal)
directseq_entry // direction-oriented animati on sequence entries,
directseq_entry // see sepa rate list
...

// end of file

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 3

The Header

The header of all sprite files is always 8 bytes long: first four bytes are used as a header-ID. For the
games CC1, CC2 and CC3 the header-ID is "SPRI". For CC4, CC5, CCM and RtB the header-ID is
"IRPS", indicating the reverse byte format. The next 4 bytes contain represent always the value 1, we
suppose that it is some kind of version-ID. Only the vehicle shadow files (*.spr-files) introduced by
CC4 (and used up to now by RtB) can have here 11 different values: 00000001h, AE7800h,
AE7A00h, AE8400h, AE9E00h, EE7A00h (airplanes in CC4/CC5), FE9700h, FEA600h,
FEBD00h, 12E7800h, 12E7A00h. Meaning of these values is still unknown.

The Directory

The second section contains some kind of directory. The start of this section is indicated by the value
1000 (in decimal) encoded in a short integer (2 bytes). The real encoding of this value depends on the
selected byte format: CC1, CC2, CC3 sprite files use here the two bytes 03h and E8h. For CC4, CC5,
CCM, RtB sprite files the byte sequence is E8h and 03h. All following values are encoded in short
integers, too: the directory contains the numbers of entries in the following sections: the number of
sprite graphics in the "Sprite section", the number of animation sequences in the "Static animations
section" and the number of animation sequences in the "Direction oriented animations section". The
last entry in the directory is of unknown purpose. In CC1, CC2 and CC3 it varies between 8 and 16.
In the vehicle shadow files of CC3 (the *.nsd / *.zsd files stored in the file "Shadows.zfx") this value
is always 64 (identical to the length of the one and only direction based animation sequence). And in
CC4-RtB it is always 63. In the "Soldier" / "SoldierB" sprite files this value is always 0. The only
excepton from the rule are the *.spr files: the values 63 or 64 are possible. It might be some kind of
color depth (as supposed by Cpl_Filth) or a further value concerning the "Direction oriented
animations section" (I suppose it is the "maximum length of sequences").

"Sprites section"

This section always starts with the short integer indicator 1001 (decimal). Internal encoding of this
indicator depends on used byte format (see above). For every sprite graphic a seperate entry is used.
The principle is always the same: each sprite entry contains of three parts: the header (describing the
image size and hotspots), the line offset table and the pixel datas in 16-bit RGB-color (since CC2.
CC1 stores them in some kind of 8-bit).

Now it is time to eliminate a CC-myth: the pixels are organized left-to-right, top-to-bottom. The
supposing by Cpl_Filth (and others before him) that CC games store their graphics flipped is a result
from adding a wrong TARGA-header to the extracted graphics. But in fact all CC graphics are stored
top-to-bottom in the original files. The flipping in the graphics editors is a result of a wrong TARGA-
header created by the older tools (like SprTool.exe)!

There are three different "sprite_entry" formats used:

CC1: similiar to the CC2 format. Fewer pixel datas than in CC2 because the pixels are encoded in 8-
bit relating to one of CC1’s color look-up tables (CLUTs). Will be discussed at the end of this guide.

CC2 and CC3: "sprite_entry" format (as discribed first by CPL_FILTH):
// header: 12 bytes
short sprite_width // 2 bytes
short sprite_height
short hotspot_X
short hotspot_Y
long sprite_data_size // 4 bytes: number of bytes

// of sprite data to follow

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 4

// (= size_of_offsetable + size_of_pixeldata)
// line offset table
short line_offset // 2 bytes for each line of the graphic.
short line_offset // offset is counted from start of pixeldata
short line_offset // that means: first entry for a line containing
short li ne_offset // pixels must be 0000h.
... // special in CC2/CC3: value FFFFh indicates

// that complete line is tranparent, no bytes
// will be in the pixeldata table for this line.

// pixeldata
data // with special run length encoding
...

The special encoding for the "pixeldata" is as follows (as originally written by Cpl_Filth):
the sprite pixel format is sort of a variation on run length encoding. The basic idea is this : a 2
byte code indicating pixel type, 2 bytes to indicate length of pixel run , and possibly (pixel run
length) * 2 bytes of color data.

The codes we have seen are :

00h transparent pixels.
FFh color pixels, this is followed by both the length and the color values for the

pixels.
F5h shadow pixels.
F7h "filling area" color, for example used by the crosshairs for the area which

will change ist color depending upon th ereachability of th etarget.
F9h 2nd shadow. Not yet really revealed for what the game it uses.
C0h -> C6h: these only come across in the soldier file, some sort of a color-by-numbers

chart (mask) for the exe to colorize the sprites in at runtime.
EDh end of line, means all pixels remaining for this line are transparent.

CPL_FILTH used the following example: 00 06 FF 02 12 34 56 78 F5 01 ED would mean 6
white pixels, followed by two pixels with the color values 0x1234 and 0x5678 respectively, a
shadow pixel and white pixels until the end of the line.

No pixel data is given for lines that are indicated as fully transparent (FFFFh) in the "line
offset table". All pixel data runs top to bottom, left to right. In CC2 and CC3 all pixel data are
encoded as 16-bit short integer. And you must obey: the sequence "special code byte"
followed by "number of pixels" is not changed when the byte format of the entire file is
changed into Little Endian for CC4/CC5/CCM/RtB files.

In CC1 you will only encounter the special codes 00h, FFh, F5h and EDh. In CC1 the pixel
data are encoded as 8-bit bytes. These bytes are index numbers pointing to an entry in one of
CC1’s color look-up tables (CLUTs).

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 5

An example for using the
"shadow" pixel area
(green), the "filling area"
pixels (pink), the "2nd
shadow" pixels (yellow)
and the "tranparent" pixels
(white): the resulting
effects of "filling area" and
"transparent" are the same
as it is for both shadow
pixel types.

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 6

CC4, CC5, CCM and RtB: "sprite_entry" format has changed:
// header: 12 bytes
short sprite_width // 2 bytes
short sprite_height
short hotspot_X
short hotspot_Y
long sprite_data_size // 4 bytes: number of bytes

// of sprite data to follow
// (= size_of_offsetable + size_of_pixeldata)

// line offset table
short line_offset // 2 bytes for each line of the graphic.
short line_offset // offset is counted from start of pixeldata
short line_offset // that means: first entry for a line containing
short line_offset // pixels must be 0000h.
... // Terrain files only: no special meaning of

// value FFFFh anymore!
// pixeldata
data // with special run length encoding
...
// terminator byte
byte zero_byte // Terrain files only: a terminating zero byte!

The special encoding for the "pixeldata" is nearly the same as in CC2/CC3, but in the
"Terrain" files now all lines can be reached via the "line offset table" and all lines contain
definitions for all pixels (even for the last transparent pixels at the end in every line). The
"Soldier"/"SoldierB" files have the same "pixeldata" encoding like in CC2/CC3 except
for the byte order:

00h transparent pixels.
FFh color pixels, this is followed by both the length and the color values for the

pixels.
F5h shadow pixels.
F7h "filling area" color, for example used by the crosshairs for the area which

will change ist color depending upon th ereachability of th etarget.
F9h NO LONGER USED in the "Terrain" files.
C0h -> C6h: these only come across in the soldier file, probably sort of a color-by-

numbers chart for the exe to color the sprites in.
EDh end of line.

In CC4 and newer all pixel data are encoded as 16-bit short integer, too. And you must obey:
the sequence "special code byte" followed by "number of pixels" is not changed even now,
where the byte format of the entire file is changed into Little Endian for this CC4/CC5/RtB
files. The main difference (which will have an effect upon encoding/decoding programs) is
that every entry is now terminated by a seperate zero byte ("Terrain" files only), except for
the"Soldier"/"SoldierB" files! Decoding the entries requires exact respecting of the size of the
entry as coded in the "sprite_data_size" value.

Known bugs inside the original files

There are some graphical bugs inside the original "Terrain" files: in the CC2 file the sprite #61 has 8
bytes too much (in one pixel line), CC3’s Terrain file contains 206 bytes too much, and the
CC4/CC5/CCM/RtB "Terrain" file also has a minor graphical bug inside. If you extract the contents
of the CC4/CC5/CCM/RtB "Terrain" file and rebuild it with my tool, you will get a 10 bytes larger
file, but it will work correctly with the original program. Investigations in late 2005 revealed that in
the "newly dug trench" sprites (for example in sprite #450, line 45) some white pixels are encoded as

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 7

color pixels with the 16-bit color value 7FFFh instead coding them as transparent pixels. This saves
some bytes.

"Static animation section" = "Sequences"

This section always starts with the short integer indicator 1002 (decimal). Atomic called the entries
within this section "Sequences". The reason why I call it "static" is because most of the animation
sequences in here are defined for non-moving objects on the map (trees, VL-flags) and CC4 and
newer really dont use the sequences defined here for animations anymore. This (and the next) section
contains only lists (sequences) of sprite numbers referring to the graphical sprites of the "sprites
section". The format of each entry "staticseq_entry“ is:

// no header
short number_of_sprites // 2 bytes, how many frames are in the sequence
short style_indicator // 2 bytes of style/type purpose
short unknown_1 // 2 bytes, always zero in CC2
short unk nown_2 // 2 bytes, always zero in CC2
data // 2 bytes for each number in the sequence

// data size = number_of_sprites * 2

The meaning of the 2 bytes of the "style_indicator" value and the 4 following bytes are still not
completely clear to me. Here is a list of values I have found:

1100h: regular sprite sequence in CC2/CC3
1200h: regular sprite sequence in CC2/CC3
2100h: not used animations in the CC2 file "Explode"
2200h: disabled entry in CC2/CC3 (?)
2220h: disabled entry in CC2 (?)
0001h: regular entry in CC4/CC5/RtB (perhaps meaning: show only 1 sprite ??)
FFF2h: always used in CC4-RtB *.spr files

In CC5-"Terrain" file the value of "unknown_1" is always 8C2Dh, the value of "unknown_2" is
always 0042h. No idea what it will mean. Changing the values of "unknown_1" and "unknown_2"
seems to have no effect during gameplay. In all CC4/CC5/CCM/RtB *.spr files the value of
"unknown_1" is always F51Ch, the value of "unknown_2" is always 0068h.

Changing the values of "style_indicator" does have effect, at least for the "Terrain"-file of CC2. I
made a test with modified CC2-"Terrain"-files in 2010, changing the "style_indicator" of the British
VL-flag animation sequence, and got the following result:

1000h: not supported = game crashes when sequence reaches it’s end.
1100h: "Sequential" = do the animation one time, stopping at it’s end,
1200h: "Looped" = perform the animation continously,
1300h: "Back and Forth" = perform the animation and loop back at it’s end.
1400h: not supported = game crashes when sequence reaches it’s end.
2100h: not supported = game crashes when loading the file "Terrain".
2200h: not supported = game crashes when loading the file "Terrain".

I believe that the value "1000h" might be supported as "no animation" in other sprite sequences, but
this was not further investigated by me.

Looking at the "style_indicator" as a whole, I believe that only the first byte of it is used in CC2 and
CC3. This first byte can be splitted into two nibbles: the four higher bits might have a special
meaning, and the four lower bits might have a different meaning. Look at the following screenshot I
got from a SpriteTool running on a WinPC (coded in 1998, updated the last time in 2005): this
screenshot shows the possible "Properties" of a "Sequence":

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 8

The higher nibble might refer to "Orientation", and the lower nibble of the first byte might refer to
"Play Mode". Three of the four possible "Play Mode" values can be set in CC2’s "Terrain"-file by
modding the "style_indicator" as shown above. I have no idea how this concept was organized later
on in CC4/CC5-"Terrain"-files. The EXE-engines of these games generate no animations at all.

"Direction-oriented animation section" = "Rotosprites"

This section always starts with the short integer indicator 1003 (decimal). It contains "orientation"
sequences to store individual references to sprites for each direction (8 directions or a multiple of 8).
Atomic was calling these sequences "Rotosprites". I will refer to them as "Direction-oriented
animations", although they are no animations at all.

An example: the CC2 file "Explode" contains 7 "Rotosprite"-sequences for gun muzzle fire, each
sequence contains 8 sprites, one for every direction. So the graphics of each sequence will not be
displayed "in a sequence", but the sequence will be treated by the game like an array of reference
numbers. The format of each entry "directseq_entry“ is:

// no header
short number_of_sprites // 2 bytes, how many numbers are in the sequence
short style_indicator / / 2 bytes of style/type purpose
short unknown_1 // 2 bytes, always zero in CC2 / CC3
data // 2 bytes for each number in the sequence

// data size = number_of_sprites * 2

In CC2 the "style_indicator" and "unknown_1" is always 0000h. In CC5-"Terrain" file the
"style_indicator" is 0001h and "unknown_1" is 8C2Dh. In all cases it looks like that both values have

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 9

no effect on the gameplay. In all CC4/CC5/CCM/RtB *.spr files the value of "style_indicator" is
always FFF2h, the value of "unknown_1" is always F51Ch.

CC1 sprites

In CC1 the pixel datas are encoded as 8-bit bytes, since CC2 the pixel datas are encoded as 16-bit
short integers. Sorry to say that CC1 sprite files have the same header like CC2 sprite files. If you
look only at the header, you cannot determine if it is a CC1 or CC2 sprite file. The only key is to
check if the sprite_data_size entry fits to the detected number of bytes when reading the data contents
as 16-bit pixel datas. If the number of bytes read exceeds the file size or the sprite_data_size entry,
you are probably reading a CC1 file.

As stated already, in CC1 the pixel datas are encoded as 8-bit bytes. These bytes are index numbers
pointing to an entry in one of CC1’s color look-up tables (CLUTs). The MacOS version of CC1
contains 6 CLUTs, numbered from 1000 to 1005. The CLUT with index number 1000 is named
"Full CLUT 12/5“ and this is the one used by the sprites. Here is the list of CC1’s CLUTs, their
names indicate their intended use I think:

- 1000 = "Full CLUT 12/5“
- 1001 = "MS Logo CLUT“
- 1002 = "Atomic Logo CLUT“
- 1003 = "CC CLUT“
- 1004 = "Movie CLUT“
- 1005 = "AtomLogo CLUT“

Converting CC1 sprite datas into graphics files requires translating the 8-bit pixel data into truecolor
values using the CLUT. But it is also possible to export the datas as 8-bit graphics, in this case the
CLUT must be incorporated into the graphics file (TARGA file format is recommended in this case).
The shadow indicating pixels (special code F5h) might then use a non-used color at the end of the
CLUT. Transparency indicating pixels (special code 00h) might use a non-used (white) color at the
beginning of the CLUT. Another way exporting 8-bit pixel sprite datas is to export them in two files:
color-datas and masks.

CC1 vehicle sprite datas contain the vehicle texture (the vehicle image) together with the shadow
definition in one graphic. The turreted CC1 vehicles have 3 direction-oriented animation sequences:
one for the vehicle’s hull (together with shadow), one for the turret and a third one for the turret’s
shadow.

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 10

Picture: CC1’s CLUT 1000 (MacOS version). Highlighted is the main color of the Sherman tank (color
#105).

A suitable routine to transfer such a CLUT into a picture is shown here (coded in RealBasic 5.2):

Sub ExportCLUTasPicture(ResourceID As Integer)
 const maxentries = 256
 const boxsize = 16

 // color look up table (CLUT) of CC1
 dim clut As String
 dim CC1red(maxentries) As Integer
 dim CC1green(maxentries) As Integer
 dim CC1blue(maxentries) As Integer
 dim myNumberOfEntries As Integer
 dim myPic As Picture
 dim i As Integer

 // the MacOS resource fork must be inside this program
 Dim rf as ResourceFork
 rf=App.ResourceFork

 clut = rf.GetResource("clut", ResourceID) // get CLUT from "clut"-resource

 // the first 8 bytes of clut are the header
 // byte 7+8 contain last entry's index, encoded in BIG Endian
 myNumberOfEntries = (AscB(MidB(clut,7,1)) * 256) + AscB(MidB(clut,8,1)) + 1
 if (myNumberOfEntries > maxentries) then
 myNumberOfEntries = maxentries
 end

 // then follows the clut table: each entry is
 // 8 bytes long: index number (2 bytes in BIG endian, counted from 0),
 // red, green, blue (each 2 bytes coded in LITTLE endian)

 for i = 0 to myNumberOfEntries - 1
 CC1red(i)=AscB(MidB(clut,(8*(i+1))+3,1))+(AscB(MidB(clut,(8*(i+1))+4,1))*256)
 CC1green(i)=AscB(MidB(clut,(8*(i+1))+5,1))+(AscB(MidB(clut,(8*(i+1))+6,1))*256)

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 11

 CC1blue(i)=AscB(MidB(clut,(8*(i+1))+7,1))+(AscB(MidB(clut,(8*(i+1))+8,1))*256)
 next

 // create picture as 32-bit truecolor
 if (myNumberOfEntries MOD 16) = 0 then
 myPic = NewPicture(boxsize*16, boxsize*(myNumberOfEntries \ 16), 32)
 else
 myPic = NewPicture(boxsize*16, boxsize*((myNumberOfEntries \ 16) + 1), 32)
 end

 if (myPic <> NIL) and (myPic.Graphics <> NIL) then
 // fill entire pic black
 myPic.Graphics.ForeColor = RGB(0,0,0) // Black
 myPic.Graphics.FillRect(0, 0, myPic.Width, myPic.Height)
 // draw the color-boxes
 for i = 0 to myNumberOfEntries - 1
 // draw the box
 myPic.Graphics.ForeColor = RGB(CC1red(i), CC1green(i), CC1blue(i))
 myPic.Graphics.FillRect(((i MOD 16) * boxsize) + 1,
 ((i \ 16) * boxsize) + 1,
 boxsize - 2, boxsize - 2)
 next
 if ExportPicture(myPic) then
 MsgBox "Your picture was saved."
 else
 MsgBox "Your picture was not saved."
 end
 end
End Sub

Synopsis of the "Header" and "Directory"

Game File Byte
order

Header-ID Sprites Static
anim.

Direction
anim.

ColorDepth?
Directions?

CC1 (Win95) EXPLODE PC IRPS 476 9 31 16

CC1 (Win95) AXRIFLE PC IRPS 1240 54 155 8

CC1 (Win95) GIRIFLE PC IRPS 1240 54 155 8

CC1 (Win95) SMOKE PC IRPS 392 31 8 8

CC1 (Win95) TERRAIN PC IRPS 181 100 1 16

CC1 (Win95) Vehicle
Type 1
(turreted)

PC IRPS 48 6 3 16

Vehicle
Type 2

PC IRPS 16 2 1 16

Vehicle
Type 3

PC IRPS 16 1 1 16

CC1 (Mac) Explosion
Sprites

Mac SPRI 476 9 31 16

CC1 (Mac) Germ Rifle
Sprites

Mac SPRI 1240 54 155 8

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 12

Game File Byte
order

Header-ID Sprites Static
anim.

Direction
anim.

ColorDepth?
Directions?

CC1 (Mac) GI Rifle
Sprites

Mac SPRI 1240 54 155 8

CC1 (Mac) Smoke
Sprites

Mac SPRI 392 31 8 8

CC1 (Mac) Terrain
Sprites

Mac SPRI 181 100 1 16

CC1 (Mac) Vehicle
Type 1
(turreted)

Mac SPRI 48 6 3 16

Vehicle
Type 2

Mac SPRI 16 2 1 16

Vehicle
Type 3

Mac SPRI 16 1 1 16

CC2 VehB###
VehS###
(turretless)

Mac SPRI 32 2 1 8

CC2 VehB###
VehS###
(turreted)

Mac SPRI 64 3 2 8

CC2 Explode Mac SPRI 588 13 31 16

CC2 Smoke Mac SPRI 620 43 8 8

CC2 / CC3 / CoI Soldier Mac SPRI 3088 127 387 0

CC2 / CC3 / CoI SoldierB Mac SPRI 1992 127 250 0

CC2 Terrain Mac SPRI 257 78 1 16

CC3 / CoI Terrain Mac SPRI 448 165 2 16

CC3 / CoI *.nsd Mac SPRI 64 1 1 64

CC3 / CoI *.zsd Mac SPRI 64 1 1 64

CC4 Terrain PC IRPS 468 176 2 63

CC5 Terrain PC IRPS 474 177 2 63

RtB Terrain PC IRPS 503 179 2 63

CCM / CCMT Terrain PC IRPS 500 177 2 63

CC:WaR / CC:TLD Terrain PC IRPS 500 248 2 63

CC4/CC5/CCM/RtB Soldier PC IRPS 3088 127 387 0

CC4/CC5/CCM/RtB SoldierB PC IRPS 1992 127 250 0

CC4/CC5/CCM/RtB *.spr PC IRPS 64 1 1 63 or 64

Byte order "Mac" = Big Endian, "PC" = Little Endian.

Looking at the table above shows that the sprite files "Soldier" / "SoldierB" remained unchanged
since CC2 except for the changing of the byte order. The new function of the file and a new sprite
sequence in the CC3-"Terrain" file survived until today, only the byte order changed and new sprites
and animation sequences were added at the end of the lists. The functionality of all other CC2 sprite
files went into FX-files for visual effects (improving them from 16-bit to 24-bit datas with 8-bit-alpha
channel).

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 13

And sorry to say: since CC3 the game will not display any animation at all even if you have defined a
sequence larger than 1 entry in this section. But in CC2 you can animate the VL-flags (like the
original game does) and in addition the trees in the "Terrain" file. Animating other objects out of this
file will fail like in all newer game versions.

Synopsis of the "Static animation section"

Game File style_indicator unknown_1 unknown_2

CC2 Terrain varying 0000h 0000h

CC3 / CoI Terrain varying 0000h 0000h

CC4 Terrain 0001h 0000h 0000h

CC5 Terrain 0001h 8C2Dh 0042h

CCM / CCMT Terrain 0001h 8C2Dh 0042h

RtB Terrain 0001h CDABh BADCh

CC:WaR Terrain 0001h
0001h
2100h

8C2Dh
8C2Dh
0000h

0042h
0000h
0000h

CC:TLD Terrain 0001h
0001h
2100h

8C2Dh
8C2Dh
0000h

0042h
0000h
0000h

If you look into the "Static animation section" entries of the file "Terrain" of "The Road to Baghdad"
and read the byte sequence, you will see the sequence "...ABCDDCAB..." for the unknown byte area:
I think this shows clearly that these bytes are not used by the program, they are simply filled up with
dummy datas.

STM file format (CC4-CC5-CCM-RtB and newer)

Used for the TerrainA.stm file in the CC versions since CC4. The whole file is encoded in Little
Endian (PC/Intel like). The TerrainA.stm file contains nearly the same graphics like the Terrain file
but in 24-bit RGB-color with 8-bit-alpha-channel. No animation sequences are defined here.

// header
char(4) // 4 bytes ASCII, the string “ALPH” = sprites with alpha-chann el
long // 4 bytes, containing value “2”
long // 4 bytes, number of sprites in this file

// directory with sprite definition entries
// each entry 20 bytes of the format:
long // 4 bytes, HotSpot X
long // 4 bytes, HotSpot Y
long // 4 bytes, image width
long // 4 bytes, image height
long // 4 bytes, offset of pixel datas (from top of file)

// sprite graphics data
// 4 bytes per pixel: blue, green, red, alpha
// line orientation is top-to-bottom, pixel orientation is left-to-right

We must use Cpl_Filths algorithm of making 32-bit TARGAS after reading the CC values myBlue,
myGreen, myRed, myAlpha:

MAFI: Sprite files of the Close Combat games (PC- & Mac-version of CC2) 14

 if ((8 * myBlue - 1) > 0) then
 myBlue = (8 * myBlue) -1
 end
 if ((8 * myGreen - 1) > 0) then
 myGreen = (8 * myGreen) -1
 end
 if ((8 * myRed - 1) > 0) then
 myRed = (8 * myRed) -1
 end
 if (myAlpha <> 0) then
 myAlpha = (8 * myAlpha) -1
 end

To write them to a valid 32-bit color-depth TARGA file, the sequence must be changed:
 OutFile.WriteByte(myRed)
 OutFile.WriteByte(myGreen)
 OutFile.WriteByte(myBlue)
 OutFile.WriteByte(myAlpha)

MAFI

closecombat2@claranet.de
http://closecombat2.fortunecity.com/
http://cc2revival.npage.de/
http://www.ftf.claranet.de/
http://www.closecombat2.claranet.de
http://www.afrika.claranet.de/
http://www.dieppe.claranet.de/
http://www.cc2.claranet.de/
http://www.mappa.claranet.de/
http://members.fortunecity.de/closecombat2/
http://www.geocities.com/cc2revival/

mailto:closecombat2@claranet.de
http://closecombat2.fortunecity.com/
http://cc2revival.npage.de/
http://www.ftf.claranet.de/
http://www.closecombat2.claranet.de
http://www.afrika.claranet.de/
http://www.dieppe.claranet.de/
http://www.cc2.claranet.de/
http://www.mappa.claranet.de/
http://members.fortunecity.de/closecombat2/
http://www.geocities.com/cc2revival/

